SYNTHESIS AND STEREOCHEMISTRY OF A METABOLITE RESULTING FROM THE BLOTRANSFOKMATION OF QUINIDINE IN MAN

Frank I. Carroll, * Abraham Philip and Michael C. Coleman Chemistry and Life Sciences Division, Research Triangle Institute, Research Triangle Park, North Carolina 27709

(Received in USA 5 September 1975; received in UK for publication 16 April 1976)

Quinidine (la), a member of the cinchona alkaloid family, is used in the treatment of cardiac arrhythmias. $^{\rm l}$. The major biotransformation products of $\rm l$ a have been isolated from the urine or man, ² and their structures were shown to be 3 -hydroxyquinidine ($2a$, metabolite-4)⁴ and $2'$ quinidinone (<u>3</u>, metabolite-5)⁴ by an analysis of their 13 C-NMR, IR, UV, and mass spectral properties.⁵ In the present paper we present the synthesis of $\underline{2a}$ and describe a 13 C-NMR study for the assignment of stereochemistry.

Pure $\frac{1a}{1}$ was converted to a mixture of $\alpha-$ and α' -10-bromodihydroquinidine (<u>5</u>)' by dissolving 1 in concentrated hydrobromic acid and passing HBr into the solution at 0° for six hours. Crude 5 was subjected to reaction with 1,5-diazabicyclo[5.4.0]undec-5-ene (DBU)⁸ in dimethylsulfoxide at 90° for two hours to form apoquinidine methyl ether $\left(4a\right)^{7,9}$ which was directly converted into the acetate $4b$ by acetylation with pyridine-acetic anhydride. The acetate 4b obtained in 65% overall yield from quinidine had m.p. $110-112^\circ$ (from Et₂0-hexane); [$\alpha\int_0^\infty$ +61.09° (c 0.568, EtOH). 10 Ozonization of $\Delta^{3(10)}$ -cinchona alkaloids similar to 4 are reported to proceed abnormally and give the corresponding 3-acetyl derivatives. $\frac{11}{100}$ We found that the olefin acetate $\frac{4b}{100}$ was smoothly oxidized with osmium tetroxide-sodium periodate $12,13$ in 80% acetic acid at 4° to give (o<u>k,95</u>)-6-methoxy-3-oxo-9-rubanol acetate (<u>6</u>) in /5% yield; m.p. 162-163° [from (CH₃),CO-Et₂O]; l¤I_D +58.46 (c 0.40, EtOH).⁻⁻ Treatment of <u>6</u> with vinyl magnesium bromide in dry THF gave two products which were separable by chromatography on Florisil using CHCl₃ \div CHCl₃:(CH₃)₃CO (4:6) as the eluent. The first component $2c$ had m.p. 188-190° (from EtOAc); $\left[\alpha\right]_D^{25}$ +132.42° (c 0.91, EtOH).¹⁰ The mass spectrum of $2c$ was essentially identical to the spectrum of metabolite-4, however, the TLC R_f values, as well as the IR, $^{\perp}$ H- and $^{\perp}$ 3C-NMR spectral properties of <u>2c,</u> although similar, were different from those of metabolite-4. It is clear from the method of synthesis as well as the elemental analysis and spectral data that 2c is the 3-hydroxy epimer of metabolite-4. The second compound eluted from the column possessed m.p., TLC R_f values, gas chromatographic retention time, IR, $^{1}_{H-MMR}$, $^{13}_{C-MMR}$, and mass spectral properties identical to metabolite-4. When the addition of vinyl magnesium bromide to 6 was carried out at 25° , the total yield of $2a$ and $2c$ was 80% , and the ratio of $2a/2c$ was $60/40$. If the addition was conducted at reflux, the yield dropped to 40%, however, metabolite-4 was the predominant product and only trace amounts of 2c were obtained.

At the time of our earlier publication, $\frac{5}{3}$ we were unable to establish the stereochemistry at C-3 of metabolite-4. However, since most biological hydroxylations proceed with retention of configuration, 14 metabolite-4 was tentatively assigned the structure $_{2a}$. A study of the 13 C-NMR

1757

chemical shifts of the C-5 and C-7 methylenes of $\underline{1a}$, $\underline{1b}$, $\overline{2a}$, $\underline{2b}$, $\overline{2c}$ and the model compounds $\frac{7a-d}{1}$ listed in Table 1 show that the original assignment is correct. The chemical shift assignment for the compounds listed in Table 1 are based on standard 13 C-NMR chemical shift theory 16 and arguments made for other cinchona alkaloids.¹⁷ As expected, the chemical shift of C-7 of $1b$ is shifted downfield relative to $1a$, whereas the chemical shift of C-5 in la and $1b$ are 16,17 The observation that the C-5 and C-7 reconomose of essentially identical. The observation that the C-5 and C-7 resonances of <u>2b</u> show similar differences in chemical shift relative to 2a confirm that the C-5 and C-7 assignments for 2a are correct. In addition, the data for the model compounds $7a-d$ show that the γ -effect of the 3hydroxy group is larger than that of a 3-vinyl group in this series and show that the y-effect of both the 3-hydroxy and the 3-vinyl is slightly reduced on going from the 3-monosubstituted derivatives <u>7b</u> and <u>7c</u> to the disubstituted derivative <u>7d</u>.¹⁸ (3<u>S</u>)-3-Hydroxyquinidine (<u>2a</u>) which has the 3-hydroxyl syn to C-5 shows a 5.68 ppm upfield and 0.83 ppm downfield shift for C-5 and C-7 respectively when compared to $\underline{1a}$. In comparison the 3-hydroxy-3-vinyl model <u>7d</u> shows a 5.36 ppm upfield and 1.86 ppm downfield shift for C-5 and C-7 when compared to the 3-vinyl model $7c$. $(3R)$ -3-Hydroxyquinidine (2c) which contains the 3-hydroxyl group syn to C-7 might be expected to show a slightly larger γ -effect at C-7 compared to <u>la</u> and <u>2a</u>, which have a 3-vinyl group <u>syn</u> to $C-7$, and a smaller γ -effect at $C-5$ compared to $2a$, which has the 3-hydroxyl group syn to $C-5$. However, since the C-5 and C-7 resonances are so close together, it is not possible to make definite assignments in this case.

In summary, we have reported the first synthesis of $(8R, 9S)-6$ -methoxy-3-oxo-9-rubanol acetate (6) and described its use to prepare 2a, an important biotransformation product of quinidine. The use of 13 C-NMR was used to establish the stereochemistry of $2a$ as (3S)-3-hydroxyquinidine.

Table 1. Carbon-13 Chemical Shifts in DMSO-d_c^a</sub>

-----	Atom $1a^b$ 1b $2a^c$ 2b 2c 7a 7b ^c 7c ^d 7d ^e				
	5 26.37 26.10 20.69 20.34 23.86 26.39 18.97 26.53 21.17				
	7 23.28 24.49 24.11 26.15 22.39 26.39 24.70 21.17 23.03				

Chemical shifts are in parts per million relative to tetramethylsilane.

Carbon

Acknowledgement: This work was carried out under Contract No. PH-43-65-1057 with the Pharmacology-Toxicology Program, National Institute of General Medical Sciences, National Institute of Health.

b) Values taken from ref. 17.

c) Values taken from ref. 5.

 $^{d)}$ 3-Vinylquinuclidine ($\frac{7c}{c}$) was prepared according to the procedure reported by L. N. Yakhontov, L. I. Mostafanova, S. L. Portnova and M. V. Rubtsov, Dokl. Akad. Nauk. SSSR, 162, 1075 (1965).

e)3-Hydroxy-3-vinylquinuclidine (7d) was prepared according to the procedure reported by M. V. Rubtsov, L. N. Yakhontov and L. I. Mostafanova, Zh. Obshch. Khim., 33, 1180 (1963).

 CH_3O <u>ia</u>, l

 $\frac{11}{10}$ = CH₂

 $b, R = C_6H_6CO$

 $HO -$

 CH_3Q

 R

-
-
- -

 CH_{2} = CH_{2}

F

5

 $, H$

 $2a$, R = H, R¹ = CH₂=CH, R¹ = OH $c, R = H, R' = HO, R'' = CH=CH_2$

 R^{\dagger}

 $b, R = C_{k}H_{5}CO, R' = CH_{2} = CH_{2}$, $R'' = OH$

Ó

 R^{11}

 \mathbf{H}

 $\overline{3}$

 $\overline{5}$

 $7a$, $R = R' = H$ \underline{b} , R = OH, R^t = H c , $R = H$, $R' = CH = CH_2$ \underline{d} , R = OH, R^t = CH=CH₂

 $b, R = CH₃CO$

Ac0

 $CH₃O₃$

R $\overline{5}$ $6 \overline{6}$

 $4a$, R = H

- 1. G. K. Moe and J. A. Abildskov, "The Pharmacological Basic of Therapeutics," 4th ed., L. S. Goodman and A. Gilman, Eds., McMillan Co., New York, N. Y., Chapter 32.
- *2.* B. B. Brodie, J. E. Baer *and* L. C. Craig, 2. Biol. Ca., 188, 567 (1951).
- 3. K. H. Palmer, B. Martin, B. Baggett and M. E. Wall, Biochem. Pharmacol., 18, 1845 (1969).
- *4.* Metabolite-4 and metabolite-5 are the designation used by Palmer and co-workers for these metabolites.
- 5. F. I. Carroll, D. Smith, M. E. Wall and C. G. Moreland, <u>J</u>. <u>Med</u>. <u>Chem</u>., <u>17</u>, 985 (1974).
- *6.* Quinidine was purified by a procedure which involved the use of mercury (II) trifluoroacetate. The details of this purification will be presented in a separate paper.
- 7. T. A. Henry, W. Solomon and E. M. Gibbs, <u>J. Chem</u>. <u>Soc</u>., 592 (1939) and earlier papers.
- *8.* H. Oediger, F. Möller and K. Eiter, Synthesis, 591 (1972).
- 9. Henry and co-workers⁷ obtained apoquinidine methyl ether $(4a)$ in low yield by treating quinidine with hot sulfuric acid. The reaction is also complicated by the need to separate 4a from a number of other products.
- 10. Satisfactory (a) IR, $^{\rm l}$ H-NMR, $^{\rm l}$ 3C-NMR and mass spectra and (b) analytical data have been obtained for $2a$, $2b \cdot 1/2$ H₂0, $2c$, 3 , $4a$, $4b$, 6 and 8.
- 11. T. S. Work, J. Chem. Soc., 334 (1944).
- 12. D. Dvornik and E. O. Edwards, Can. J. Chem., 35, 860 (1957).
- 13. H. Vorbrueggen and C. Djerassi, J. Amer. Chem. Soc., 84, 2990 (1962).
- 14. R. Bentley, "Molecular Asymmetry in Biology," Vol. II, Academic Press, New York, N. L., 1970, Chapter 3.
- 15. The benzoates $1\mathrm{b}$ and $2\mathrm{b}$, m.p. $188-189^\circ$, were prepared by treating $1\mathrm{a}$ and $2\mathrm{a}$ with benzoic anhydride in pyridine. The 1 H-NMRs of these compounds are in agreement with the assigned structures.
- 16. **G. E.** Maciel in "Topics in Carbon-13 NMR Spectroscopy," Vol. 1, G. C. Levy, Ed., John Wiley and Sons, New York, N. Y., 1974, Chapter 2.
- 17. C. G. Moreland, A. Philip and F. I. Carroll, J. Org. Chem., 39, 2413 (1974).
- 18. Similar type shifts *were* noted by Lippma and co-workers for some substituted norboranes. See E. Lippma, T. Pehk, J. Passivirta, N. Belikova and A. Plate, Org. Magn. Reson., 2, 581 (1970) .